soal dan pembahasan simak ui 2019 kemampuan ipa Kode 323 bisa kamu dapatkan dalam artikel ini, dimana kamu bisa download soal simak ui 2019 kemampuan ipa Berikutini adalah Soal dan Pembahasan Matematika IPA SIMAK UI 2018 dengan Kode Soal 416. Di halaman ini kakak berbagi kumpulan naskah soal un smp 2017 2018 yang bisa langsung kalian download dengan mudah dan gratis. Apabila menemui kendala dalam download silahkan melalui laptop PC dan silahkan log in menggunakan akun gmail masing-masing. BagiKamu yang akan mengikuti Penmaba Mandiri UNJ 2018 melalui Jalur Ujian Tulis, ada baiknya kamu mempersiapkan diri dengan mempelajari Latihan Soal Penmaba Ujian Mandiri UNJ 2018 atau Soal Tes Masuk UNJ, yang diambil dari Soal Penmaba UNJ Tahun 2017 dan 2018. Berikut Soal USM UNJ, Soal Latihan Penmaba UNJ 2018 atau Ujian Mandiri UNJ Untukitulah demi menyukseskan tema-teman dalam menggapai impian masuk ke universitas favorit Universitas Indonesia, dan membagikan dari berbagai sumber soal dan pembahasan SIMAK UI. Semoga bermanfaat, berikut Soal SIMAK UI Lengkap 2015 + Jawaban Secara Rinci 2015 Lengkap. SoalUM UNDIP 2015 (Saintek) Kode 521. Soal UM UNDIP 2016 (Saintek) Kode 503. Pembahasan Matematika UM UNDIP 2011 Kode 111. No 1 sampai 3. No 4 sampai 9. No 10 sampai 17. No 17 sampai 20. Pembahasan Matematika UM UNDIP 2012 Kode 121: No SoalKemampuan IPA SIMAK UI Tahun 2015 + Jawaban Secara Rinci - Selamat sore menjelang malam para pejuang SIMAK UI, Semangat kalian yang pantang menyerah dalam mengejar impian masuk ke KampusJas Kuning hingga saat ini, suatu saat akan membuahkan hasil. Pada moment ini guna memperlancar semua itu, membagikan . Seleksi Masuk Universitas Indonesia sering dikenal dengan istilah SIMAK UI. Penyelenggara SIMAK UI hanyalah Universitas Indonesia yang tujuannya untuk merekrut penerimaan mahasiswa baru. Perlu diketahui bahwa materi yang diujikan pada SIMAK UI adalah Kemampuan Dasar KD terdiri atas Bahasa Indonesia, Bahasa Inggris, dan Matematika Dasar. Kemampuan IPA KA terdiri atas Biologi, Kimia, Fisika, Matematika IPA dan IPA Terpadu. Kemampuan IPS KS terdiri atas Geografi, Ekonomi, Sejarah, dan IPS Terpadu. Materi apa saja yang harus adik-adik pelajari??? Tentu hal ini tergantung dari prodi apa yang kalian pilih. Untuk jelasnya perhatikan berikut ini Jika adik-adik memilih prodi IPA maka materi yang harus kalian pelajari adalah KD dan KA. Jika adik-adik memilih prodi IPS maka materi yang harus kalian pelajari adalah KD dan KS. Jika adik-adik memilih prodi IPC IPA dan IPS maka kalian tentu harus lebih ekstra mempelajari tiga kemampuan yaitu KD, KA, dan KS. Baiklah, adik-adik karena ini seleksi tentu PERSIAPAN adalah salah satu penentu kelulusan. Untuk itu silahkan perhatikan Soal dan Pembahasan Matematika IPA SIMAK UI Tahun 2017 berikut ini Matematika SIMAK UI 2017 No. 1 Jika lingkaran $x^2+y^2-2ax+b=0$ berjari-jari 2 menyinggung garis $x-y=0$. Maka jumlah kuadrat semua nilai $a$ yang mungkin adalah …. A. 2 B. 8 C. 12 D. 16 E. 18 Pembahasan Lingkaran $x^2 + y^2-2ax+b=0$ berjari-jari 2 $A = -2a, B = 0, C = b$ Titik pusat $\left \frac{A}{-2}, \frac{B}{-2} \right$ = a, 0 Panjang jari-jari lingkaran sama dengan jarak titik pusat a, 0 ke garis singgung $x-y = 0$. $\begin{align} \left \frac{ \right &=2 \\ \left \frac{a}{\sqrt{2}} \right & =2 \\ \left a \right & =2\sqrt{2} \\ a & =\pm 2\sqrt{2} \\ \end{align}$ $a_1=2\sqrt{2}$, atau ${{a}_{2}}=-2\sqrt{2}$ Jumlah kuadrat semua nilai $a$ yang mungkin adalah $\begin{align} a_1^2+a_2^2&=\left2\sqrt{2}\right^2+\left-2\sqrt{2}\right^2 \\ &=8 + 8\\ &=16 \end{align}$ Kunci D Matematika SIMAK UI 2017 No. 2 Jika $x_1$ dan $x_2$ adalah akar-akar $2x^2-2c-1x-c^3+4=0$, maka nilai maksimum $x_{1}^{2}+x_{2}^{2}$ adalah … A. $-4\frac{3}{4}$ B. $-3\frac{3}{4}$ C. $-2\frac{3}{4}$ D. $2\frac{3}{4}$ E. $3\frac{3}{4}$ Pembahasan $2x^2-2c-1x-c^2+4=0$ $A=2$, $B=-2c+1$, $-c^3+4$ $x_1+x_2=\frac{-B}{A} = \frac{2c-1}{2}$ $ = \frac{4-c^3}{2}$ $\begin{align} x_1^2+x_2^2&=x_1+x_2^2-2x_1x_2 \\ &=\left \frac{2c-1}{2} \right^2-2.\frac{4-c^3}{2} \\ &=\frac{4c^2-4c+1}{4}-\frac{16-4c^3}{4} \\ &=\frac{4c^3+4c^2-4c-15}{4} \\ x_1^2+x_2^2&=c^3+c^2-c-\frac{15}{4} \end{align}$ $\frac{d}{dc}\leftx_1^2+x_2^2 \right = 0$ $3c^2+2c-1=0$ $3c-1c+1=0$ $c=\frac{1}{3}$ atau $c=-1$ Uji turunan kedua $\frac{d^2}{dc^2}=6c+2$ $c=\frac{1}{3} \rightarrow \frac{d^2}{dc^2}=6.\frac{1}{3}+2 = 4 > 0$ maka diperoleh nilai minimum untuk $c=\frac{1}{3}$ $c=-1 \rightarrow \frac{d^2}{dc^2}=6.-11+2 = -4 11$ C. $x \le 1$ atau $x \ge 11$ D. $-1 x > -1$ $-1 0 \rightarrow x > 1$ maka ${{S}_{\infty }}=\frac{a}{1-r}$ $1=\frac{x-1}{1-{{x-1}^{2}}}$ $1=\frac{x-1}{1-{{x}^{2}}+2x-1}$ $-{{x}^{2}}+2x=x-1$ ${{x}^{2}}-x-1$ $x=\frac{-b+\sqrt{{{b}^{2}}-4ac}}{2a}$ $x=\frac{1+\sqrt{{{-1}^{2}} $x=\frac{1+\sqrt{5}}{2}$ Kunci B Matematika SIMAK UI 2017 No. 7 Jika $sin \ 2x+cos \ 2x=-16cos \ x + 8sin \ x + cos^2 \ x$ dengan $0\le x \le \frac{\pi}{2}$, maka $sin \ 2x$ = … A. $\frac{4}{5}$ B. $\frac{3}{5}$ C. $\frac{2}{5}$ D. $\frac{1}{5}$ E. 0 Pembahasan $sin \ 2x+cos \ 2x=-16cos \ x + 8sin \ x + cos^2 \ x$ $2\sin \ x.\cos x+2{{\cos }^{2}}x-1$ = $-16\cos x+8\sin x+{{\cos }^{2}}x$ $2\sin \ x.\cos x+16\cos x+{{\cos }^{2}}x-1-8\sin x=0$ $2\cos x\sin \ x+8-{{\sin }^{2}}x-8\sin x=0$ $2\cos x\sin \ x+8-\sin x\sin x+8=0$ $2\cos x-\sin x\sin \ x+8=0$ $2\cos x-\sin x=0$ $\sin x=2\cos x$ $\frac{\sin x}{\cos x}=2$ $\tan x=\frac{2}{1}=\frac{de}{sa}$ maka $mi=\sqrt{{{2}^{2}}+{{1}^{2}}}=\sqrt{5}$ $\sin x=\frac{de}{mi}=\frac{2}{\sqrt{5}}$ dan $\cos x=\frac{sa}{mi}=\frac{1}{\sqrt{5}}$ $sin\ 2x=2\sin x.\cos x$ $sin\ 2x=2.\frac{2}{\sqrt{5}}.\frac{1}{\sqrt{5}}=\frac{4}{5}$ Kunci A Matematika SIMAK UI 2017 No. 8 $\lim_{x\to \frac{\pi }{2}}\frac{\sec 2x+2}{\tan 2x}$ = … A. $-2$ B. $-1$ C. $-\frac{1}{2}$ D. 0 E. 1 Pembahasan Misal $y=x-\frac{\pi }{2}\leftrightarrow x=y+\frac{\pi }{2}$ Jika $x\to \frac{\pi }{2}$ maka $y\to 0$ $\underset{x\to \frac{\pi }{2}}{\mathop{\lim }}\,\frac{\sec 2x+2}{\tan 2x}$ $=\underset{y\to 0}{\mathop{\lim }}\,\frac{\sec 2\left y+\frac{\pi }{2} \right+2}{\tan 2\left y+\frac{\pi }{2} \right}$ $=\underset{y\to 0}{\mathop{\lim }}\,\frac{-\sec 2y+2}{\tan 2y}$ $=\underset{y\to 0}{\mathop{\lim }}\,\frac{-\frac{1}{\cos 2y}+2}{\frac{\sin 2y}{\cos 2y}}$ $=\underset{y\to 0}{\mathop{\lim }}\,\frac{-1+2\cos 2y}{\sin 2y}$ Dengan teorema L’Hospital $=\underset{y\to 0}{\mathop{\lim }}\,\frac{-4\sin 2y}{2\cos 2y}$ $=\underset{y\to 0}{\mathop{\lim }}\,-2\tan 2y$ $=-2.\tan $=0$ Kunci D Matematika SIMAK UI 2017 No. 9 $6\int\limits_{0}^{1}{\cos \pi x+{{x}^{2}}-3x+2dx}$ = $a-1a-5$, maka nilai $a$ adalah … A. $-2$ atau $-3$ B. 0 atau $-6$ C. 2 atau $-2$ D. 0 atau 6 E. 2 atau 3 Pembahasan $6\int\limits_{0}^{1}{\cos \pi x+{{x}^{2}}-3x+2dx}=a-1a-5$ $\left. 6\left \frac{1}{\pi }\sin \pi x+\frac{1}{3}{{x}^{3}}-\frac{3}{2}{{x}^{2}}+2x \right \right_{0}^{1}=a-1a-5$ $6\left 0+\frac{1}{3}-\frac{3}{2}+2 \right-0={{a}^{2}}-5a-a+5$ $2-9+12={{a}^{2}}-5a-a+5$ ${{a}^{2}}-6a=0$ $aa-6=0$ $a=0$ atau $a=6$Kunci D Matematika SIMAK UI 2017 No. 10 Diberikan kubus dengan panjang rusuk $5a$. Sebuah titik P terletak pada rusuk CG sehingga CP PG = 2 3. Bidang PBD membagi kubus menjadi dua bagian dengan perbandingan volume …. A. 114 B. 113 C. 112 D. 111 E. 110 Pembahasan Perhatikan gambar berikut $V_1$ = Volume $=\frac{1}{3}.\frac{ $=\frac{1}{3}.\frac{ $=\frac{25a^3}{3}$ Volume Kubus = $ = 125a^3$ $V_2$ = Volume $= Volume \ Kubus - V_1$ $=125a^3-\frac{25a^3}{3}$ $V_2=\frac{350a^3}{3}$ $V_1V_2=\frac{25a^3}{3}\frac{350a^3}{3}$ $V_1V_2=114$ Kunci A Matematika SIMAK UI 2017 No. 11 Diberikan kubus dengan panjang rusuk 8. Di dalam kubus tersebut terdapat sebuah limas segiempat beraturan dengan tinggi $a$. Jika JIka titik Q terletak pada rusuk FG sehingga QG = FQ dan jarak antara titik Q ke bidang PCD adalah 4, maka nilai $a$ adalah …. A. 3 B. 4 C. 5 D. 6 E. 7 Pembahasan Matematika SIMAK UI 2017 No. 12 Jika $fx = \frac{1}{3}x^3-2x^2+3x$ dengan $-1 \le x \le 2$ mempunyai nilai maksimum di $a, b$, maka nilai $\int\limits_{a}^{b}{f'xdx}$ adalah … A. $\frac{16}{81}$ B. $\frac{15}{81}$ C. $\frac{12}{81}$ D. $\frac{9}{81}$ E. $\frac{8}{81}$ Pembahasan $fx = \frac{1}{3}x^3-2x^2+3x$ $f'x=0$ $f'x={{x}^{2}}-4x+3=0$ $x-3x-1=0$ $x=3$ atau $x=1$, nilai maksimum pada interval $-1 \le x \le 2$ Uji nilai x = $-1$, 1, dan 2 $f-1=\frac{1}{3}{{-1}^{3}}-2{{-1}^{2}}+3-1=-\frac{16}{3}$ $f1=\frac{1}{3}{{1}^{3}}-{{ $f2=\frac{1}{3}{{.2}^{3}}-{{ nilai maksimum di titik $\left 1,\frac{4}{3} \right=\left a,b \right$ $\int\limits_{a}^{b}{{f}'xdx}=\left. fx \right_{a}^{b}$ $=\left. \frac{1}{3}{{x}^{3}}-2{{x}^{2}}+3x \right_{1}^{\frac{4}{3}}$ $=\left[ \frac{1}{3}{{\left \frac{4}{3} \right}^{3}}-2{{\left \frac{4}{3} \right}^{2}}+3\left \frac{4}{3} \right \right]-\frac{4}{3}$ $=\frac{64}{81}-\frac{32}{9}+\frac{12}{3}-\frac{4}{3}$ $=-\frac{8}{81}$ Kunci Tidak ada opsi yang memenuhi. Gunakan petunjuk C dalam mengerjakan soal nomor 13 sampai nomor 15 Matematika SIMAK UI 2017 No. 13 Diketahui vector $\overrightarrow{a}=1,1,p$, $\overrightarrow{b}=-2,n,-3$, $\overrightarrow{c}=m,4n,4$, dan $\overrightarrow{d}=2m,4-p,8$. Jika $\overrightarrow{a}$ tegak lurus dengan $\overrightarrow{b}$ dan $\overrightarrow{c}$, sejajar dengan $\overrightarrow{d}$, maka …. 1 $2n-6p=4$ 2 $m$ sembarang bilangan real 3 $n+p=\frac{2}{25}$ 4 $n=\frac{13}{25}$ Pembahasan $\overrightarrow{a}\bot \overrightarrow{b}$ maka $\vec{a}.\vec{b}=0$ $1,1,p.-2,n-3=0$ $-2+n-3p=0$ $n-3p=2$ } kali 2 $2n-6p=4$ maka 1 benar $\overrightarrow{a}\bot \overrightarrow{b}$ dan $\vec{a}\parallel \overrightarrow{d}$ maka $\vec{b}\bot \overrightarrow{d}$ $\vec{b}.\overrightarrow{d}=0$ $-2,n,-32m,4-p,8=0$ $-4m+4n-np-24=0$ $4n-np=4m+24$ $\vec{a}\bot \overrightarrow{c}$ dan $\vec{a}\parallel \overrightarrow{d}$ maka $\overrightarrow{c}\bot \overrightarrow{d}$ $\overrightarrow{c}.\overrightarrow{d}=0$ $m,4n,42m,4-p,8=0$ $2{{m}^{2}}+16n-4np+32=0$ $2{{m}^{2}}+44n-np+32=0$ $2{{m}^{2}}+44m+24+32=0$ ${{m}^{2}}+8m+80=0$ Uji diskriminan $D={{b}^{2}}-4ac$ $={{8}^{2}} $=-256 < 0$ Maka nilai m imaginer. Jadi 2 salah. Nah yang lain tidak perlu kita cek, maka opsinya adalah B. Kunci B Matematika SIMAK UI 2017 No. 14 Jika $\sin \ 10^o = a$, maka … 1 $\frac{1}{sin \ 10^o}-4 \ sin \ 70^o = 2$ 2 $\frac{1}{sin \ 10^o}+4 \ sin \ 70^o = 2a$ 3 $\frac{1}{sin \ 10^o}-8 \ sin \ 70^o = 4-\frac{1}{a}$ 4 $\frac{1}{sin \ 10^o}-16 \ sin \ 70^o = 8-\frac{1}{a}$ Pembahasan Matematika SIMAK UI 2017 No. 15 Jika $fx = sin \ 3x + x^3+4x^2+5x$, maka … 1 $f'0.f''0=64$ 2 $\frac{f''0}{f'0}=1$ 3 $\frac{f'''0}{f''0}=\frac{-21}{8}$ 4 $f'''0-f''0+f'0=15$ Pembahasan $fx = sin \ 3x + x^3+4x^2+5x$ $f'x=3\cos \ 3x+3{{x}^{2}}+8x+5$ $f'0=3\cos \ $f''x=-9\sin 3x+6x+8$ $f''x=-9\sin $f'''x=-27\cos 3x+6$ $f'''x=-27\cos 1 ${f}'0.{f}''0= benar 2 $\frac{f''0}{f'0}=\frac{8}{8}=1$ benar. 3 $\frac{f'''0}{f''0}=\frac{-21}{8}$, benar 4 ${f}'''0-{f}''0+{f}'0=-21-8+8=-21\ne 15$, salah Karena 1, 2, dan 3 benar, sedangkan 4 salah maka opsi A. Kunci A Semoga postingan Pembahasan Soal SIMAK UI 2017 Matematika IPA ini bisa bermanfaat. Mohon keikhlasan hatinya, membagikan postingan ini di media sosial bapak/ibu guru dan adik-adik sekalian. Terima kasih. Subscribe and Follow Our Channel Soal dan Pembahasan Matematika Dasar SIMAK UI 2017 Nomor 1-5 Soal SIMAK UI Matematika Dasar No 4Semoga Masuk Lulus PTN di UI kakak !!! Aamiin Pembahasan Matematika Dasar Simak UI 2017 Nomor 1 Pembahasan Matematika Dasar Simak UI 2017 Nomor 2 Pembahasan Matematika Dasar Simak UI 2017 Nomor 3 Pembahasan Matematika Dasar Simak UI 2017 Nomor 4 Pembahasan Matematika Dasar Simak UI 2017 Nomor 5 Soal dan Pembahasan Matematika Dasar SIMAK UI 2017 Nomor 6 - 10 Pembahasan Matematika Dasar Simak UI 2017 Nomor 6 Pembahasan Matematika Dasar Simak UI 2017 Nomor 7 Pembahasan Soal Matematika Dasar Simak UI 2017 Nomor 8 Pembahasan Soal Matematika Dasar Simak UI 2017 Nomor 9 Pembahasan Soal Matematika Dasar Simak UI 2017 Nomor 10 Soal dan Pembahasan Matematika Dasar SIMAK UI 2017 Nomor 11 - 15 Pembahasan Soal Matematika Dasar Simak UI 2017 Nomor 11 Pembahasan Soal Matematika Dasar Simak UI 2017 Nomor 12 Pembahasan Soal Matematika Dasar Simak UI 2017 Nomor 13 Pembahasan Soal Matematika Dasar Simak UI 2017 Nomor 14 Pembahasan Soal Matematika Dasar Simak UI 2017 Nomor 15 Berikut ini adalah Soal dan Pembahasan Matematika IPA SIMAK UI 2018 dengan Kode Soal 416. Soal ini merupakan salah satu alat tes untuk menyeleksi mahasiswa/i tahun ajaran 2018/2019 yang akan mengecap pendidikan tinggi di universitas ternama di Indonesia yaitu Universitas Indonesia UI. Universitas Indonesia terletak di Jl. Margonda Raya, Beji, Pondok Cina Kota Depok Jawa Barat. Pembahasan SIMAK UI 2018/2019 ini adalah hasil pemikiran sederhana saya yang tentu masih jauh dari kata sempurna. Saya sangat menghargai kritik dan saran dari pengunjung setia Catatan Matematika yang sifatnya membangun dan mari diskusi dan belajar bersama melalui kolom komentar di akhir postingan ini. Soal SIMAK UI 2018 - Matematika IPA No. 1 Diketahui suku banyak $fx$ dibagi ${{x}^{2}}+x-2$ bersisa $ax+b$ dan dibagi ${{x}^{2}}-4x+3$ bersisa $2bx+a-1$. Jika $f-2=7$, maka ${{a}^{2}}+{{b}^{2}}$ = … A. 12 B. 10 C. 9 D. 8 E. 5Penyelesaian Lihat/Tutup Yang dibagi = Pembagi x Hasil bagi + Sisa Suku banyak $fx$ dibagi $x^2+x-2$ bersisa $ax+b$, maka $fx$ = $x^2+x-2$Hasil + $ax+b$ $fx$ = $x+2x-1$Hasil + $ax+b$ $f-2$ = $-2+2-2-1$Hasil + $-2a+b$ $f-2$ = $-2a+b=7$ … persamaan 1 $f1$ = $1+21-1$Hasil + $a+b$ $f1$ = $a+b$ … persamaan 2 Suku banyak $fx$ dibagi $x^2-4x+3$ bersisa $2bx+a-1$, maka $fx$ = $x^2-4x+3$Hasil + $2bx+a-1$ $fx$ = $x-1x-3$Hasil + $2bx+a-1$ $f1$ = $1-11-3$Hasil + $2b+a-1$ $f1$ = $2b+a-1$ substitusi ke persamaan 2, maka $2b+a-1=a+b$ $b=1$ Substitusi ke persamaan 1, maka $-2a+b=7\Leftrightarrow -2a+1=7\Leftrightarrow a=-3$ ${{a}^{2}}+{{b}^{2}}={{-3}^{2}}+{{1}^{2}}=10$ Jawaban B Soal SIMAK UI 2018 - Matematika IPA No. 2 Himpunan penyelesaian $16-x^2\le x+4$ adalah … A. {$x\in R-4\le x\le 4$} B. {$x\in R-4\le x\le 3$} C. {$x\in Rx\le -4$ atau $x\ge 4$} D. {$x\in R0\le x\le 3$} E. {$x\in Rx\le -4$ atau $x\ge 3$}Penyelesaian Lihat/Tutup i Untuk $x\ge -4$ maka $16-x^2\le x+4$ $16-x^2\le x+4$ $12-x^2-x\le 0$ $x^2+x-12\ge 0$ $x+4x-3\ge 0$ $x\le -4$ atau $x\ge 3$ yang memenuhi syarat $x\ge -4$ adalah $x\ge 3$. ii Untuk $x\le 4$, maka $16-x^2\le x+4$ $16-x^2\le -x+4$ $20-x^2+x\le 0$ $x^2-x-20\ge 0$ $x-5x+4\ge 0$ $x\le -4$ atau $x\ge 5$ yang memenuhi syarat $x\le 4$ adalah $x\le -4$ Dari i dan ii diperoleh {$x\in Rx\le -4$ atau $x\ge 3$} Jawaban E Soal SIMAK UI 2018 - Matematika IPA No. 3 Jika ${{x}_{1}}$ atau ${{x}_{2}}$ memenuhi persamaan $2{{\sin }^{2}}x-\cos x=1$, $0\le x\le \pi $, nilai ${{x}_{1}}+{{x}_{2}}$ adalah … A. $\frac{\pi }{3}$ B. $\frac{2\pi }{3}$ C. $\pi $ D. $\frac{4}{3}\pi $ E. $2\pi $Penyelesaian Lihat/Tutup $2{{\sin }^{2}}x-\cos x=1$ $21-{{\cos }^{2}}x-\cos x=1$ $2{{\cos }^{2}}x+\cos x-1=0$ $2\cos x-1\cos x+1=0$ $\cos x=\frac{1}{2}\Rightarrow {{x}_{1}}={{60}^{o}}$ atau $\cos x=-1\Leftrightarrow {{x}_{2}}={{180}^{o}}$ ${{x}_{1}}+{{x}_{2}}={{60}^{o}}+{{180}^{o}}$ ${{x}_{1}}+{{x}_{2}}={{240}^{o}}=\frac{{{240}^{o}}}{{{180}^{o}}}\pi =\frac{4}{3}\pi $ Jawaban D Soal SIMAK UI 2018 - Matematika IPA No. 4 Jika $\underset{x\to -3}{\mathop{\lim }}\,\frac{\frac{1}{ax}+\frac{1}{3}}{b{{x}^{3}}+27}=-\frac{1}{{{3}^{5}}}$, nilai $a+b$ untuk $a$ dan $b$ bilangan bulat positif adalah … A. -4 B. -2 C. 0 D. 2 E. 4Penyelesaian Lihat/Tutup $\underset{x\to -3}{\mathop{\lim }}\,\frac{\frac{1}{ax}+\frac{1}{3}}{b{{x}^{3}}+27}=-\frac{1}{{{3}^{5}}}$ $\underset{x\to -3}{\mathop{\lim }}\,\frac{3+ax}{3axb{{x}^{3}}+27}=-\frac{1}{{{3}^{5}}}$ Untuk $x=-3$ maka $3+ax=0\Leftrightarrow 3-3a=0\Leftrightarrow a=1$ Untuk $x=-3$ maka $b{{x}^{3}}+27=0\Leftrightarrow b.{{-3}^{3}}+27=0\Leftrightarrow b=1$ $a+b=1+1=2$ Jawaban E Soal SIMAK UI 2018 - Matematika IPA No. 5 Jika $fx$ fungsi kontinu di interval $[1,30]$ dan $\int\limits_{6}^{30}{fxdx}=30$, maka $\int\limits_{1}^{9}{f3y+3dy}$ = … A. 5 B. 10 C. 15 D. 18 E. 27Penyelesaian Lihat/Tutup Misal $\int\limits_{y=1}^{y=9}{f3y+3dy}$ $x=3y+3$ maka $\frac{dx}{dy}=3\Leftrightarrow dy=\frac{1}{3}dx$ $y=1\Rightarrow x=6$ $y=9\Rightarrow x=30$ $\int\limits_{1}^{9}{f3y+3dy}=\int\limits_{6}^{30}{fx.\frac{1}{3}dx}$ $=\frac{1}{3}\int\limits_{6}^{30}{fxdx}$ $=\frac{1}{3}.30=10$ Jawaban B Soal SIMAK UI 2018 - Matematika IPA No. 6 Pada balok dengan AB = 6, BC = 3, dan CG = 2, titik M, N, dan O masing-masing terletak pada rusuk EH, FG, dan AD. Jika 3EM = EH, FN = 2NG, 3DO = 2DA, dan $\alpha$ adalah bidang irisan balok yang melalui M, N, dan O, perbandingan luas bidang $\alpha$ dengan luas permukaan balok adalah … A. $\frac{\sqrt{35}}{36}$ B. $\frac{\sqrt{37}}{36}$ C. $\frac{\sqrt{38}}{36}$ D. $\frac{\sqrt{39}}{36}$ E. $\frac{\sqrt{41}}{36}$Penyelesaian Lihat/Tutup Berdasarkan informasi soal, maka dapat dibuat gambar sebagai berikut Bidang $\alpha$ adalah bidang MNN’O berupa persegipanjang Perhatikan segitiga MM’N siku-siku di titik M, dengan MM’ = 6 cm, M’N = 1 cm, maka $MN=\sqrt{{{6}^{2}}+{{1}^{1}}}=\sqrt{37}$ Luas bidang $\alpha$ adalah $=N'N\times MN$ $=2\sqrt{37}$ Luas permukaan balok adalah $=2 $=2 $\frac{\alpha }{ Jawaban B Soal SIMAK UI 2018 - Matematika IPA No. 7 Diberikan kubus Sebuah titik P terletak pada rusuk CG sehingga CP PG = 5 2. Jika $\alpha $ adalah sudut terbesar antara rusuk CG dan bidang PBD, maka $\sin \alpha $ = … A. $-\frac{7\sqrt{11}}{33}$ B. $-\frac{7\sqrt{11}}{44}$ C. $\frac{7\sqrt{11}}{33}$ D. $\frac{7\sqrt{11}}{44}$ E. $\frac{7\sqrt{11}}{55}$Penyelesaian Lihat/Tutup Karena CP PG = 5 2 untuk mempermudah perhitungan misalkan panjang rusuk kubus 14 cm, maka CP = 10 cm dan PG = 4 cm. Perhatikan gambar berikut ini! Sudut terbesar antara rusuk CG dan bidang PBD adalah $\alpha $, dengan $\alpha ={{180}^{o}}-\angle CPQ$ $CQ=7\sqrt{2}$, CP = 10, maka $PQ=\sqrt{C{{Q}^{2}}+C{{P}^{2}}}$ $PQ=\sqrt{{{7\sqrt{2}}^{2}}+{{10}^{2}}}$ $PQ=3\sqrt{22}$ $\sin \alpha =\sin {{180}^{o}}-\angle CPQ$ $\sin \alpha =\sin \angle CPQ$ $\sin \alpha =\frac{CQ}{PQ}$ $\sin \alpha =\frac{7\sqrt{2}}{3\sqrt{22}}$ $\sin \alpha =\frac{7}{3\sqrt{11}}\times \frac{\sqrt{11}}{\sqrt{11}}=\frac{7\sqrt{11}}{33}$ Jawaban C Soal SIMAK UI 2018 - Matematika IPA No. 8 Jika ${{3}^{x}}+{{5}^{y}}=18$, nilai maksimum ${{3}^{x}}{{.5}^{y}}$ adalah … A. 72 B. 80 C. 81 D. 86 E. 88Penyelesaian Lihat/Tutup ${{3}^{x}}+{{5}^{y}}=18$ Misal ${{3}^{x}}=a$ dan ${{3}^{y}}=b$ , maka $a+b=18\Leftrightarrow a=18-b$ nilai maksimum $ab=...?$ $L= $L=a18-a$ $L=18a-{{a}^{2}}$ Maksimum/minimum, maka $L'=0$ $18-2a=0\Leftrightarrow a=9$ $L=18a-{{a}^{2}}\Leftrightarrow L= Jawaban C Soal SIMAK UI 2018 - Matematika IPA No. 9 Diketahui $sx-y=0$ adalah garis singgung sebuah lingkaran yang titik pusatnya di kuadran ketiga dan berjarak 1 satuan ke sumbu-$x$. Jika lingkaran tersebut menyinggung sumbu-$x$ dan titik pusatnya dilalui garis $x=-2$, nilai $3s$ adalah … A. $\frac{1}{6}$ B. $\frac{4}{3}$ C. 3 D. 4 E. 6Penyelesaian Lihat/Tutup Berdasarkan informasi soal, maka dapat dibuat gambar sebagai berikut! Dari gambar diperoleh Lingkaran melalui berpusat di titik -2,-1 dan berjari-jari 1, maka persamaan lingkarannya adalah ${{x+2}^{2}}+{{y+1}^{2}}={{1}^{2}}$, $y=sx$ ${{x+2}^{2}}+{{sx+1}^{2}}=1$ $x^2+4x+4+{{s}^{2}}x^2+2sx+1=1$ ${{s}^{2}}+1x^2+2s+4x+4=0$, syarat menyinggung $D=0$, ${{b}^{2}}-4ac=0$ ${{2s+4}^{2}}-4{{s}^{2}}+14=0$ $4{{s}^{2}}+16s+16-16{{s}^{2}}-16=0$ $-12{{s}^{2}}+16s=0$ $-4s3s-4=0$ $-4s=0$ atau $3s=4$ Jawaban D Soal SIMAK UI 2018 - Matematika IPA No. 10 Jika kurva $y=a-2x^2+\sqrt{3}1-ax+a-2$ selalu berada di atas sumbu-$x$, bilangan bulat terkecil $a-2$ yang memenuhi adalah … A. 6 B. 7 C. 8 D. 9 E. 10Penyelesaian Lihat/Tutup $y=a-2x^2+\sqrt{3}1-ax+a-2$ maka $A=a-2$, $B=\sqrt{3}1-a$, $C=a-2$, Selalu berada di atas sumbu-X definit positif, maka 1 $A > 0\Leftrightarrow a-2 > 0\Leftrightarrow a>2$ 2 $D 0$, dengan rumus abc maka $a=\frac{10\pm \sqrt{48}}{2}$ $a=\frac{10\pm 4\sqrt{3}}{2}$ $a=5\pm 2\sqrt{3}$ $a 5+2\sqrt{3}$ Dari 1 dan 2 diperoleh batas nilai $a$ adalah $a > 5+2\sqrt{3}\Leftrightarrow a > 5+\sqrt{12}$ $a-2 > 5+\sqrt{12}-2$, karena diminta bilangan bulat terkecil, maka $a-2=5+\sqrt{16}-2=7$ Jawaban B Soal SIMAK UI 2018 - Matematika IPA No. 11 Jika $a+b-c=2$, ${{a}^{2}}+{{b}^{2}}-4{{c}^{2}}=2$, dan $ab=\frac{3}{2}{{c}^{2}}$, nilai $c$ adalah … A. 0 B. 1 C. 2 D. 3 E. 6Penyelesaian Lihat/Tutup $a+b-c=2$ $a+b=2+c$ ${{a+b}^{2}}={{2+c}^{2}}$ ${{a}^{2}}+{{b}^{2}}+2ab={{c}^{2}}+4c+4$ ${{a}^{2}}+{{b}^{2}}-4{{c}^{2}}=2$ - $2ab+4{{c}^{2}}={{c}^{2}}+4c+2$ $3{{c}^{2}}-4c+2ab-2=0$, diketahui $ab=\frac{3}{2}{{c}^{2}}$ $3{{c}^{2}}-4c+2.\frac{3}{2}{{c}^{2}}-2=0$ $6{{c}^{2}}-4c-2=0$ $3{{c}^{2}}-2c-1=0$ $3c+1c-1=0$ $c=-\frac{1}{3}$ atau $c=1$ Jawaban B Soal SIMAK UI 2018 - Matematika IPA No. 12 Jika ${{S}_{n}}$ adalah jumlah sampai suku ke-n dari barisan geometri, ${{S}_{1}}+{{S}_{6}}=1024$ dan ${{S}_{3}}\times {{S}_{4}}=1023$, maka $\frac{{{S}_{11}}}{{{S}_{8}}}$ = … A. 3 B. 16 C. 32 D. 64 E. 254Penyelesaian Lihat/Tutup Soal Keliru Gunakan petunjuk C dalam menjawab soal nomor 13 sampai nomor 15. Petunjuk C yaitu pilihlah A. Jika 1, 2, 3 benar. B. Jika 1 dan 3 benar. C. Jika 2 dan 4 benar. D. Jika hanya 4 yang benar. E. Jika semuanya benar. Soal SIMAK UI 2018 - Matematika IPA No. 13 Jika vektor $\vec{u}=2,-1,2$ dan $\vec{v}=4,10,-8$, maka … 1 $\vec{u}+k\vec{v}$ tegak lurus $\vec{u}$ bila $k=\frac{17}{18}$ 2 sudut antara $\vec{u}$ dan $\vec{v}$ adalah sudut tumpul. 3 $pro{{y}_{{\vec{u}}}}\vec{v}=6$ 4 Jarak antara $\vec{u}$ dan $\vec{v}$ sama dengan $\vec{u}+\vec{v}$Penyelesaian Lihat/Tutup Pernyataan 1 $\vec{u}+k\vec{v}$ tegak lurus $\vec{u}$, maka $\vec{u}+k\vec{v}.\vec{u}=0$ $\left \begin{matrix} 2+4k \\ -1+10k \\ 2-8k \\ \end{matrix} \right.\left \begin{matrix} 2 \\ -1 \\ 2 \\ \end{matrix} \right=0$ $4+4k+1-10k+4-16k=0$ $-22k=-9\Leftrightarrow k=\frac{9}{22}$, Pernyataan 1 SALAH Pernyataan 2 $\cos u,v=\frac{ $\cos u,v=\frac{\left \begin{matrix} 2 \\ -1 \\ 2 \\ \end{matrix} \right.\left \begin{matrix} 4 \\ 10 \\ -8 \\ \end{matrix} \right}{\sqrt{4+1+4}.\sqrt{16+100+64}}$ $\cos u,v=\frac{8-10-16}{ $\cos u,v=\frac{-18}{18\sqrt{5}}$, karena nilainya negatif maka sudut antara $\vec{u}$ dan $\vec{v}$ adalah sudut tumpul. Pernyataan 2 BENAR. Berdasarkan petunjuk C, tanpa mengecek pernyataan 4 maka opsi yang memenuhi adalah C. Jawaban C Soal SIMAK UI 2018 - Matematika IPA No. 14 Jika $y=\frac{1}{3}{{x}^{3}}-ax+b$, $a > 0$, dan $a,b\in R$, maka … 1 nilai minimum lokal $y=b-\frac{2}{3}{{a}^{\frac{3}{2}}}$ 2 nilai maksimum lokal $y=b+\frac{2}{3}{{a}^{\frac{3}{2}}}$ 3 $y$ stasioner saat $x={{a}^{\frac{1}{2}}}$ 4 naik pada interval $\left[ -\infty ,-{{a}^{\frac{1}{2}}} \right]$Penyelesaian Lihat/Tutup $y=\frac{1}{3}{{x}^{3}}-ax+b$ $\frac{dy}{dx}=x^2-a=0$, karena $a > 0$ maka $x+\sqrt{a}x-\sqrt{a}=0$ $x=-\sqrt{a}$ atau $x=\sqrt{a}$, Dari gambar garis bilangan, maka pernyataan 3 dan 4 BENAR. $y=\frac{1}{3}{{x}^{3}}-ax+b$ $x=-\sqrt{a}\Rightarrow y=b+\frac{2}{3}{{a}^{\frac{3}{2}}}$ nilai maksimum lokal, pernyataan 1 BENAR. $x=\sqrt{a}\Rightarrow y=b-\frac{2}{3}{{a}^{\frac{3}{2}}}$ nilai minimum lokal, pernyataan 2 BENAR. Jawaban E Soal SIMAK UI 2018 - Matematika IPA No. 15 Jika $\alpha =-\frac{\pi }{12}$, maka … 1 ${{\sin }^{4}}\alpha +{{\cos }^{4}}\alpha =\frac{6}{8}$ 2 ${{\sin }^{6}}\alpha +{{\cos }^{6}}\alpha =\frac{12}{16}$ 3 ${{\cos }^{4}}\alpha =\frac{1}{2}-\frac{1}{4}\sqrt{3}$ 4 ${{\sin }^{4}}\alpha =\frac{7}{16}-\frac{1}{4}\sqrt{3}$Penyelesaian Lihat/Tutup $\alpha =-\frac{\pi }{12}=-{{15}^{o}}$ $\sin {{15}^{o}}=\sin {{45}^{o}}-{{30}^{o}}$ $\sin {{15}^{o}}=\sin {{45}^{o}}\cos {{30}^{o}}-\cos {{45}^{o}}\sin {{30}^{o}}$ $\sin {{15}^{o}}=\frac{1}{2}\sqrt{2}.\frac{1}{2}\sqrt{3}-\frac{1}{2}\sqrt{2}.\frac{1}{2}$ $\sin {{15}^{o}}=\frac{\sqrt{6}-\sqrt{2}}{4}$ ${{\sin }^{2}}{{15}^{o}}={{\left \frac{\sqrt{6}-\sqrt{2}}{4} \right}^{2}}$ ${{\sin }^{2}}{{15}^{o}}=\frac{2-\sqrt{3}}{4}$ ${{\sin }^{4}}{{15}^{o}}={{\left \frac{2-\sqrt{3}}{4} \right}^{2}}=\frac{7}{16}-\frac{1}{4}\sqrt{3}$, pernyataan 4 BENAR. Dengan cara yang sama $\cos {{15}^{o}}=\frac{\sqrt{6}+\sqrt{2}}{4}$ ${{\cos }^{2}}{{15}^{o}}=\frac{2+\sqrt{3}}{4}$ ${{\cos }^{4}}{{15}^{o}}={{\left \frac{2+\sqrt{3}}{4} \right}^{2}}=\frac{7}{16}-\frac{1}{4}\sqrt{3}$, pernyataan 3 SALAH. Dengan logika, berdasarkan petunjuk C maka kita sudah dapat menentukan opsi yang memenuhi adalah D. Jawaban D Subscribe and Follow Our Channel Soal dan Pembahasan Matematika IPA Simak UI 2017 New Update !!! Soal dan Pembahasan No 1-5 Matematika IPA SIMAK UI 2017 Pembahasan Matematika IPA Simak UI Nomor 1 Pembahasan Matematika IPA Simak UI Nomor 2 Pembahasan Matematika IPA Simak UI Nomor 3 Pembahasan Matematika IPA Simak UI Nomor 4 Pembahasan Matematika IPA Simak UI Nomor 5 Soal dan Pembahasan No 6-10 Matematika IPA SIMAK UI 2017 Pembahasan Matematika IPA Simak UI Nomor 6 Pembahasan Matematika IPA Simak UI Nomor 7 Pembahasan Matematika IPA Simak UI Nomor 8 Pembahasan Matematika IPA Simak UI Nomor 9 Pembahasan Matematika IPA Simak UI Nomor 10 Soal dan Pembahasan No 11-15 Matematika IPA SIMAK UI 2017 Pembahasan Matematika IPA Simak UI Nomor 11 Pembahasan Matematika IPA Simak UI Nomor 12 Pembahasan Matematika IPA Simak UI Nomor 13 Pembahasan Matematika IPA Simak UI Nomor 14 Pembahasan Matematika IPA Simak UI Nomor 15 You Might Also Like

pembahasan soal simak ui 2017 matematika ipa